Nuprl Lemma : prod-ss-eq
∀[ss1,ss2:SeparationSpace]. ∀[x,y:Point(ss1 × ss2)].  uiff(x ≡ y;fst(x) ≡ fst(y) ∧ snd(x) ≡ snd(y))
Proof
Definitions occuring in Statement : 
prod-ss: ss1 × ss2, 
ss-eq: x ≡ y, 
ss-point: Point(ss), 
separation-space: SeparationSpace, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
or: P ∨ Q, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
top: Top, 
member: t ∈ T, 
ss-eq: x ≡ y, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
prod-ss_wf, 
or_wf, 
not_wf, 
pi1_wf_top, 
ss-point_wf, 
pi2_wf, 
ss-sep_wf, 
prod-ss-point, 
prod-ss-sep
Rules used in proof : 
productEquality, 
unionElimination, 
dependent_functionElimination, 
inrFormation, 
independent_pairEquality, 
productElimination, 
lambdaEquality, 
hypothesisEquality, 
inlFormation, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss1,ss2:SeparationSpace].  \mforall{}[x,y:Point(ss1  \mtimes{}  ss2)].    uiff(x  \mequiv{}  y;fst(x)  \mequiv{}  fst(y)  \mwedge{}  snd(x)  \mequiv{}  snd(y))
Date html generated:
2018_07_29-AM-10_11_11
Last ObjectModification:
2018_07_03-PM-05_28_56
Theory : constructive!algebra
Home
Index