Nuprl Lemma : prod-ss-eq

[ss1,ss2:SeparationSpace]. ∀[x,y:Point(ss1 × ss2)].  uiff(x ≡ y;fst(x) ≡ fst(y) ∧ snd(x) ≡ snd(y))


Proof




Definitions occuring in Statement :  prod-ss: ss1 × ss2 ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q
Definitions unfolded in proof :  guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: or: P ∨ Q false: False implies:  Q not: ¬A uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) top: Top member: t ∈ T ss-eq: x ≡ y uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf prod-ss_wf or_wf not_wf pi1_wf_top ss-point_wf pi2_wf ss-sep_wf prod-ss-point prod-ss-sep
Rules used in proof :  productEquality unionElimination dependent_functionElimination inrFormation independent_pairEquality productElimination lambdaEquality hypothesisEquality inlFormation independent_functionElimination lambdaFormation independent_pairFormation because_Cache hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss1,ss2:SeparationSpace].  \mforall{}[x,y:Point(ss1  \mtimes{}  ss2)].    uiff(x  \mequiv{}  y;fst(x)  \mequiv{}  fst(y)  \mwedge{}  snd(x)  \mequiv{}  snd(y))



Date html generated: 2018_07_29-AM-10_11_11
Last ObjectModification: 2018_07_03-PM-05_28_56

Theory : constructive!algebra


Home Index