Nuprl Lemma : prod-ss_wf

[ss1,ss2:SeparationSpace].  (ss1 × ss2 ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  prod-ss: ss1 × ss2 separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  pi2: snd(t) pi1: fst(t) false: False not: ¬A top: Top prod-ss: ss1 × ss2 ss-point: Point ss-sep: y or: P ∨ Q all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ separation-space: SeparationSpace member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf equal_wf ss-sep-irrefl pi2_wf pi1_wf_top ss-sep_wf mk-ss_wf or_wf not_wf all_wf subtype_rel_self
Rules used in proof :  axiomEquality dependent_functionElimination inrEquality inlEquality independent_functionElimination unionElimination lambdaFormation voidEquality voidElimination isect_memberEquality independent_pairEquality productElimination dependent_set_memberEquality productEquality rename setElimination functionExtensionality because_Cache cumulativity lambdaEquality equalitySymmetry equalityTransitivity functionEquality setEquality universeEquality isectElimination extract_by_obid instantiate tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution hypothesisEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss1,ss2:SeparationSpace].    (ss1  \mtimes{}  ss2  \mmember{}  SeparationSpace)



Date html generated: 2016_11_08-AM-09_12_01
Last ObjectModification: 2016_11_02-AM-11_39_06

Theory : inner!product!spaces


Home Index