Nuprl Lemma : ss-homotopic_inversion

X:SeparationSpace. ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b)  ss-homotopic(X;x0;x1;b;a))


Proof




Definitions occuring in Statement :  ss-homotopic: ss-homotopic(X;x0;x1;a;b) path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q ss-homotopic: ss-homotopic(X;x0;x1;a;b) exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: cand: c∧ B uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} sq_stable: SqStable(P) squash: T path-at: p@t ss-eq: x ≡ y not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) assert: b ifthenelse: if then else fi  nonneg-poly: nonneg-poly(p) bl-all: (∀x∈L.P[x])_b reduce: reduce(f;k;as) list_ind: list_ind int_term_to_ipoly: int_term_to_ipoly(t) int_term_ind: int_term_ind itermSubtract: left (-) right add_ipoly: add_ipoly(p;q) add-ipoly-prepend: add-ipoly-prepend(p;q;l) itermConstant: "const" cons: [a b] minus-poly: minus-poly(p) map: map(f;as) nil: [] it: rev-append: rev(as) bs list_accum: list_accum band: p ∧b q nonneg-monomial: nonneg-monomial(m) le_int: i ≤j bnot: ¬bb lt_int: i <j bfalse: ff btrue: tt even-int-list: even-int-list(L) bor: p ∨bq null: null(as) true: True req_int_terms: t1 ≡ t2
Lemmas referenced :  path-ss-point rleq_wf int-to-real_wf real_wf path-at_wf path-ss_wf member_rccint_lemma rleq-implies-rleq rsub_wf trivial-rsub-rleq rleq_functionality_wrt_implies rleq_weakening_equal path-at_functionality sq_stable__rleq unit-ss-eq req_functionality rsub_functionality req_weakening req-same ss-eq_wf unit-ss_wf unit_ss_point_lemma i-member_wf rccint_wf rleq-int istype-false ss-homotopic_wf ss-point_wf separation-space_wf itermSubtract_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real-term-nonneg istype-int real_term_value_sub_lemma real_term_value_const_lemma rleq_weakening real_polynomial_null real_term_value_var_lemma ss-eq_functionality ss-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt sqequalHypSubstitution productElimination thin cut sqequalRule introduction extract_by_obid isectElimination Error :memTop,  hypothesis dependent_set_memberEquality_alt lambdaEquality_alt productEquality natural_numberEquality hypothesisEquality universeIsType setElimination rename dependent_functionElimination independent_isectElimination independent_pairFormation because_Cache equalityTransitivity equalitySymmetry productIsType setIsType independent_functionElimination imageMemberEquality baseClosed imageElimination functionIsType applyEquality dependent_pairFormation_alt independent_pairEquality voidElimination functionIsTypeImplies inhabitedIsType approximateComputation int_eqEquality

Latex:
\mforall{}X:SeparationSpace
    \mforall{}[x0,x1:Point(X)].    \mforall{}a,b:Point(Path(X)).    (ss-homotopic(X;x0;x1;a;b)  {}\mRightarrow{}  ss-homotopic(X;x0;x1;b;a))



Date html generated: 2020_05_20-PM-01_20_38
Last ObjectModification: 2020_01_06-AM-11_24_24

Theory : intuitionistic!topology


Home Index