Nuprl Lemma : ss-homotopic_inversion
∀X:SeparationSpace. ∀[x0,x1:Point(X)]. ∀a,b:Point(Path(X)). (ss-homotopic(X;x0;x1;a;b)
⇒ ss-homotopic(X;x0;x1;b;a))
Proof
Definitions occuring in Statement :
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
,
path-ss: Path(X)
,
ss-point: Point(ss)
,
separation-space: SeparationSpace
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
member: t ∈ T
,
prop: ℙ
,
cand: A c∧ B
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
guard: {T}
,
sq_stable: SqStable(P)
,
squash: ↓T
,
path-at: p@t
,
ss-eq: x ≡ y
,
not: ¬A
,
false: False
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
nonneg-poly: nonneg-poly(p)
,
bl-all: (∀x∈L.P[x])_b
,
reduce: reduce(f;k;as)
,
list_ind: list_ind,
int_term_to_ipoly: int_term_to_ipoly(t)
,
int_term_ind: int_term_ind,
itermSubtract: left (-) right
,
add_ipoly: add_ipoly(p;q)
,
add-ipoly-prepend: add-ipoly-prepend(p;q;l)
,
itermConstant: "const"
,
cons: [a / b]
,
minus-poly: minus-poly(p)
,
map: map(f;as)
,
nil: []
,
it: ⋅
,
rev-append: rev(as) + bs
,
list_accum: list_accum,
band: p ∧b q
,
nonneg-monomial: nonneg-monomial(m)
,
le_int: i ≤z j
,
bnot: ¬bb
,
lt_int: i <z j
,
bfalse: ff
,
btrue: tt
,
even-int-list: even-int-list(L)
,
bor: p ∨bq
,
null: null(as)
,
true: True
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
path-ss-point,
rleq_wf,
int-to-real_wf,
real_wf,
path-at_wf,
path-ss_wf,
member_rccint_lemma,
rleq-implies-rleq,
rsub_wf,
trivial-rsub-rleq,
rleq_functionality_wrt_implies,
rleq_weakening_equal,
path-at_functionality,
sq_stable__rleq,
unit-ss-eq,
req_functionality,
rsub_functionality,
req_weakening,
req-same,
ss-eq_wf,
unit-ss_wf,
unit_ss_point_lemma,
i-member_wf,
rccint_wf,
rleq-int,
istype-false,
ss-homotopic_wf,
ss-point_wf,
separation-space_wf,
itermSubtract_wf,
itermConstant_wf,
itermVar_wf,
req-iff-rsub-is-0,
real-term-nonneg,
istype-int,
real_term_value_sub_lemma,
real_term_value_const_lemma,
rleq_weakening,
real_polynomial_null,
real_term_value_var_lemma,
ss-eq_functionality,
ss-eq_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalHypSubstitution,
productElimination,
thin,
cut,
sqequalRule,
introduction,
extract_by_obid,
isectElimination,
Error :memTop,
hypothesis,
dependent_set_memberEquality_alt,
lambdaEquality_alt,
productEquality,
natural_numberEquality,
hypothesisEquality,
universeIsType,
setElimination,
rename,
dependent_functionElimination,
independent_isectElimination,
independent_pairFormation,
because_Cache,
equalityTransitivity,
equalitySymmetry,
productIsType,
setIsType,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
functionIsType,
applyEquality,
dependent_pairFormation_alt,
independent_pairEquality,
voidElimination,
functionIsTypeImplies,
inhabitedIsType,
approximateComputation,
int_eqEquality
Latex:
\mforall{}X:SeparationSpace
\mforall{}[x0,x1:Point(X)]. \mforall{}a,b:Point(Path(X)). (ss-homotopic(X;x0;x1;a;b) {}\mRightarrow{} ss-homotopic(X;x0;x1;b;a))
Date html generated:
2020_05_20-PM-01_20_38
Last ObjectModification:
2020_01_06-AM-11_24_24
Theory : intuitionistic!topology
Home
Index