Nuprl Lemma : ss-homotopic_inversion
∀X:SeparationSpace. ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b) 
⇒ ss-homotopic(X;x0;x1;b;a))
Proof
Definitions occuring in Statement : 
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
, 
path-ss: Path(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
path-at: p@t
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
nonneg-poly: nonneg-poly(p)
, 
bl-all: (∀x∈L.P[x])_b
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
add_ipoly: add_ipoly(p;q)
, 
add-ipoly-prepend: add-ipoly-prepend(p;q;l)
, 
itermConstant: "const"
, 
cons: [a / b]
, 
minus-poly: minus-poly(p)
, 
map: map(f;as)
, 
nil: []
, 
it: ⋅
, 
rev-append: rev(as) + bs
, 
list_accum: list_accum, 
band: p ∧b q
, 
nonneg-monomial: nonneg-monomial(m)
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
lt_int: i <z j
, 
bfalse: ff
, 
btrue: tt
, 
even-int-list: even-int-list(L)
, 
bor: p ∨bq
, 
null: null(as)
, 
true: True
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
path-ss-point, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
path-at_wf, 
path-ss_wf, 
member_rccint_lemma, 
rleq-implies-rleq, 
rsub_wf, 
trivial-rsub-rleq, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
path-at_functionality, 
sq_stable__rleq, 
unit-ss-eq, 
req_functionality, 
rsub_functionality, 
req_weakening, 
req-same, 
ss-eq_wf, 
unit-ss_wf, 
unit_ss_point_lemma, 
i-member_wf, 
rccint_wf, 
rleq-int, 
istype-false, 
ss-homotopic_wf, 
ss-point_wf, 
separation-space_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real-term-nonneg, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
rleq_weakening, 
real_polynomial_null, 
real_term_value_var_lemma, 
ss-eq_functionality, 
ss-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :memTop, 
hypothesis, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
productEquality, 
natural_numberEquality, 
hypothesisEquality, 
universeIsType, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
setIsType, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionIsType, 
applyEquality, 
dependent_pairFormation_alt, 
independent_pairEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}X:SeparationSpace
    \mforall{}[x0,x1:Point(X)].    \mforall{}a,b:Point(Path(X)).    (ss-homotopic(X;x0;x1;a;b)  {}\mRightarrow{}  ss-homotopic(X;x0;x1;b;a))
Date html generated:
2020_05_20-PM-01_20_38
Last ObjectModification:
2020_01_06-AM-11_24_24
Theory : intuitionistic!topology
Home
Index