Nuprl Lemma : ss-homotopic_wf

[X:SeparationSpace]. ∀[x0,x1:Point(X)]. ∀[a,b:Point(Path(X))].  (ss-homotopic(X;x0;x1;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-homotopic: ss-homotopic(X;x0;x1;a;b) path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-homotopic: ss-homotopic(X;x0;x1;a;b) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] prop: and: P ∧ Q cand: c∧ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} so_apply: x[s]
Lemmas referenced :  member_rccint_lemma exists_wf ss-point_wf path-ss_wf ss-eq_wf path-at_wf rleq_weakening_equal int-to-real_wf rleq-int false_wf rleq_wf all_wf real_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality lambdaEquality productEquality because_Cache natural_numberEquality independent_isectElimination independent_pairFormation productElimination independent_functionElimination lambdaFormation dependent_set_memberEquality setEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[x0,x1:Point(X)].  \mforall{}[a,b:Point(Path(X))].    (ss-homotopic(X;x0;x1;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-01_20_33
Last ObjectModification: 2018_07_05-PM-03_51_35

Theory : intuitionistic!topology


Home Index