Nuprl Lemma : trivial-rsub-rleq

[a,d:ℝ].  uiff((a d) ≤ a;r0 ≤ d)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rsub: y int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B real: prop:
Lemmas referenced :  rleq-implies-rleq int-to-real_wf rsub_wf real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 less_than'_wf real_wf nat_plus_wf rleq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination dependent_functionElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,d:\mBbbR{}].    uiff((a  -  d)  \mleq{}  a;r0  \mleq{}  d)



Date html generated: 2017_10_03-AM-08_26_05
Last ObjectModification: 2017_07_28-AM-07_24_08

Theory : reals


Home Index