Nuprl Lemma : ss-mem-empty

[X:SeparationSpace]. ∀[x:Point(X)].  uiff(x ∈ ss-empty();False)


Proof




Definitions occuring in Statement :  ss-empty: ss-empty() ss-mem-open: x ∈ O ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] false: False
Definitions unfolded in proof :  uall: [x:A]. B[x] ss-empty: ss-empty() ss-mem-open: x ∈ O uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T false: False exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf ss-basic_wf false_wf ss-mem-basic_wf ss-point_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule independent_pairFormation introduction cut sqequalHypSubstitution productElimination thin voidElimination hypothesis extract_by_obid isectElimination hypothesisEquality lambdaEquality productEquality rename

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[x:Point(X)].    uiff(x  \mmember{}  ss-empty();False)



Date html generated: 2020_05_20-PM-01_22_09
Last ObjectModification: 2018_07_06-PM-01_59_50

Theory : intuitionistic!topology


Home Index