Nuprl Lemma : ss-prod-prod

[X,Y,Z:SeparationSpace].  ss-homeo(X × Y × Z;X × Y × Z)


Proof




Definitions occuring in Statement :  ss-homeo: ss-homeo(X;Y) prod-ss: ss1 × ss2 separation-space: SeparationSpace uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top ss-function: ss-function(X;Y;f) all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B ss-point: Point(ss) record-select: r.x prod-ss: ss1 × ss2 mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt rev_uimplies: rev_uimplies(P;Q) pi1: fst(t) pi2: snd(t) cand: c∧ B rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q ss-homeo: ss-homeo(X;Y) exists: x:A. B[x] ss-ap: f(x) ss-eq: x ≡ y not: ¬A false: False
Lemmas referenced :  ss-fun-point prod-ss-point ss-point_wf prod-ss-eq prod-ss_wf subtype_rel_self iff_weakening_uiff ss-eq_wf pi2_wf pi1_wf_top subtype_rel_product top_wf ss-function_wf separation-space_wf ss-sep_wf ss-ap_wf all_wf exists_wf ss-fun_wf ss-eq_weakening iff_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache dependent_set_memberEquality lambdaEquality spreadEquality hypothesisEquality independent_pairEquality productEquality lambdaFormation productElimination independent_isectElimination applyEquality independent_pairFormation promote_hyp dependent_pairEquality independent_functionElimination functionEquality dependent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[X,Y,Z:SeparationSpace].    ss-homeo(X  \mtimes{}  Y  \mtimes{}  Z;X  \mtimes{}  Y  \mtimes{}  Z)



Date html generated: 2020_05_20-PM-01_20_05
Last ObjectModification: 2018_08_31-AM-00_26_59

Theory : intuitionistic!topology


Home Index