Step
*
of Lemma
ss-prod-prod
No Annotations
∀[X,Y,Z:SeparationSpace]. ss-homeo(X × Y × Z;X × Y × Z)
BY
{ (Auto
THEN (Assert λt.let xy,z = t
in let x,y = xy
in <x, y, z> ∈ Point(X × Y × Z ⟶ X × Y × Z) BY
((RWW "ss-fun-point prod-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Reduce 0
THEN Auto
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN ∀h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN (D -1 THEN (RWO "prod-ss-eq" (-2) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN ∀h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN Auto))
THEN (Assert λt.let x,yz = t
in let y,z = yz
in <<x, y>, z> ∈ Point(X × Y × Z ⟶ X × Y × Z) BY
((RWW "ss-fun-point prod-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Reduce 0
THEN Auto
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN ∀h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN D -1
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN ∀h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN Auto))) }
1
1. [X] : SeparationSpace
2. [Y] : SeparationSpace
3. [Z] : SeparationSpace
4. λt.let xy,z = t
in let x,y = xy
in <x, y, z> ∈ Point(X × Y × Z ⟶ X × Y × Z)
5. λt.let x,yz = t
in let y,z = yz
in <<x, y>, z> ∈ Point(X × Y × Z ⟶ X × Y × Z)
⊢ ss-homeo(X × Y × Z;X × Y × Z)
Latex:
Latex:
No Annotations
\mforall{}[X,Y,Z:SeparationSpace]. ss-homeo(X \mtimes{} Y \mtimes{} Z;X \mtimes{} Y \mtimes{} Z)
By
Latex:
(Auto
THEN (Assert \mlambda{}t.let xy,z = t
in let x,y = xy
in <x, y, z> \mmember{} Point(X \mtimes{} Y \mtimes{} Z {}\mrightarrow{} X \mtimes{} Y \mtimes{} Z) BY
((RWW "ss-fun-point prod-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Reduce 0
THEN Auto
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN \mforall{}h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN (D -1
THEN (RWO "prod-ss-eq" (-2) THENA Auto)
THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN \mforall{}h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN Auto))
THEN (Assert \mlambda{}t.let x,yz = t
in let y,z = yz
in <<x, y>, z> \mmember{} Point(X \mtimes{} Y \mtimes{} Z {}\mrightarrow{} X \mtimes{} Y \mtimes{} Z) BY
((RWW "ss-fun-point prod-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Reduce 0
THEN Auto
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN \mforall{}h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN D -1
THEN ((RWO "prod-ss-eq" (-1) THENA Auto) THEN (RWO "prod-ss-eq" 0 THENA Auto))
THEN \mforall{}h:hyp. ((RWO "prod-ss-point" h THENA Auto) THEN D h)
THEN All Reduce
THEN Auto)))
Home
Index