Nuprl Lemma : ss-mem-basic-and

[X:SeparationSpace]. ∀u,v:ss-basic(X). ∀x:Point(X).  uiff(x ∈ ss-basic-and(u;v);x ∈ u ∧ x ∈ v)


Proof




Definitions occuring in Statement :  ss-basic-and: ss-basic-and(u;v) ss-mem-basic: x ∈ B ss-basic: ss-basic(X) ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q ss-basic-and: ss-basic-and(u;v) ss-mem-basic: x ∈ B l_all: (∀x∈L.P[x]) ss-basic: ss-basic(X) squash: T prop: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subtype_rel: A ⊆B ss-point: Point(ss) record-select: r.x real-ss: mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt real: guard: {T} iff: ⇐⇒ Q less_than: a < b subtract: m less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q
Lemmas referenced :  sq_stable__ss-mem-basic ss-mem-basic_wf ss-basic-and_wf ss-point_wf ss-basic_wf separation-space_wf length-append non_neg_length ss-fun_wf real-ss_wf real_wf decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf intformle_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than append_wf select_append_front rless_wf ss-ap_wf subtype_rel_self iff_weakening_equal int_seg_wf add-member-int_seg1 decidable__le itermSubtract_wf int_term_value_subtract_lemma subtract_wf select_append_back int_seg_properties add-associates minus-one-mul add-swap add-mul-special zero-mul add-zero select-append subtype_rel_list top_wf int_seg_subtype_nat istype-false lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf add-is-int-iff false_wf length_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination because_Cache universeIsType productIsType inhabitedIsType setElimination rename dependent_set_memberEquality_alt productElimination Error :memTop,  productEquality addEquality unionElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination spreadEquality applyEquality equalityTransitivity equalitySymmetry closedConclusion equalityElimination equalityIstype promote_hyp instantiate cumulativity pointwiseFunctionality baseApply

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}u,v:ss-basic(X).  \mforall{}x:Point(X).    uiff(x  \mmember{}  ss-basic-and(u;v);x  \mmember{}  u  \mwedge{}  x  \mmember{}  v)



Date html generated: 2020_05_20-PM-01_22_21
Last ObjectModification: 2020_02_08-AM-11_38_55

Theory : intuitionistic!topology


Home Index