Nuprl Lemma : ss-mem-basic-and
∀[X:SeparationSpace]. ∀u,v:ss-basic(X). ∀x:Point(X).  uiff(x ∈ ss-basic-and(u;v);x ∈ u ∧ x ∈ v)
Proof
Definitions occuring in Statement : 
ss-basic-and: ss-basic-and(u;v)
, 
ss-mem-basic: x ∈ B
, 
ss-basic: ss-basic(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
ss-basic-and: ss-basic-and(u;v)
, 
ss-mem-basic: x ∈ B
, 
l_all: (∀x∈L.P[x])
, 
ss-basic: ss-basic(X)
, 
squash: ↓T
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
ss-point: Point(ss)
, 
record-select: r.x
, 
real-ss: ℝ
, 
mk-ss: Point=P #=Sep cotrans=C
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
real: ℝ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
less_than: a < b
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
sq_stable__ss-mem-basic, 
ss-mem-basic_wf, 
ss-basic-and_wf, 
ss-point_wf, 
ss-basic_wf, 
separation-space_wf, 
length-append, 
non_neg_length, 
ss-fun_wf, 
real-ss_wf, 
real_wf, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
append_wf, 
select_append_front, 
rless_wf, 
ss-ap_wf, 
subtype_rel_self, 
iff_weakening_equal, 
int_seg_wf, 
add-member-int_seg1, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtract_wf, 
select_append_back, 
int_seg_properties, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
select-append, 
subtype_rel_list, 
top_wf, 
int_seg_subtype_nat, 
istype-false, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
add-is-int-iff, 
false_wf, 
length_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
universeIsType, 
productIsType, 
inhabitedIsType, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
Error :memTop, 
productEquality, 
addEquality, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
spreadEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
pointwiseFunctionality, 
baseApply
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}u,v:ss-basic(X).  \mforall{}x:Point(X).    uiff(x  \mmember{}  ss-basic-and(u;v);x  \mmember{}  u  \mwedge{}  x  \mmember{}  v)
Date html generated:
2020_05_20-PM-01_22_21
Last ObjectModification:
2020_02_08-AM-11_38_55
Theory : intuitionistic!topology
Home
Index