Nuprl Lemma : length_append
∀[as,bs:Top List]. (||as @ bs|| = (||as|| + ||bs||) ∈ ℤ)
Proof
Definitions occuring in Statement :
length: ||as||
,
append: as @ bs
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
add: n + m
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
top: Top
Lemmas referenced :
length-append,
length_wf,
top_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalTransitivity,
computationStep,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isect_memberFormation,
introduction,
addEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache
Latex:
\mforall{}[as,bs:Top List]. (||as @ bs|| = (||as|| + ||bs||))
Date html generated:
2016_05_14-AM-06_35_15
Last ObjectModification:
2015_12_26-PM-00_34_57
Theory : list_0
Home
Index