Nuprl Lemma : select-append

[L1,L2:Top List]. ∀[i:ℕ].  (L1 L2[i] if i <||L1|| then L1[i] else L2[i ||L1||] fi )


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| append: as bs list: List nat: ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] top: Top subtract: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] less_than': less_than'(a;b) not: ¬A colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than top_wf list-cases list_ind_nil_lemma length_of_nil_lemma stuck-spread istype-base istype-nat product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le list_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le decidable__int_equal subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus list_ind_cons_lemma length_of_cons_lemma le_weakening2 lt_int_wf equal-wf-base bool_wf istype-int assert_wf less_than_wf le_int_wf bnot_wf minus-zero add-zero uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int length_wf bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff non_neg_length length_wf_nat istype-sqequal not-lt-2 le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow mul-distributes mul-commutes mul-associates decidable__le not-le-2 less-iff-le add-is-int-iff select-cons bnot_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt axiomSqEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination Error :memTop,  baseClosed because_Cache promote_hyp hypothesis_subsumption equalityIstype dependent_set_memberEquality_alt instantiate cumulativity intEquality equalityTransitivity equalitySymmetry imageMemberEquality applyLambdaEquality addEquality minusEquality baseApply closedConclusion applyEquality sqequalBase equalityElimination dependent_pairFormation_alt multiplyEquality

Latex:
\mforall{}[L1,L2:Top  List].  \mforall{}[i:\mBbbN{}].    (L1  @  L2[i]  \msim{}  if  i  <z  ||L1||  then  L1[i]  else  L2[i  -  ||L1||]  fi  )



Date html generated: 2020_05_19-PM-09_37_10
Last ObjectModification: 2020_03_09-PM-01_25_49

Theory : list_0


Home Index