Nuprl Lemma : select-cons

[x,L:Top]. ∀[i:ℤ].  ([x L][i] if i ≤then else L[i 1] fi )


Proof




Definitions occuring in Statement :  select: L[n] cons: [a b] le_int: i ≤j ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf top_wf select-cons-hd select-cons-tl decidable__lt false_wf not-lt-2 not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add add_functionality_wrt_le le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate because_Cache independent_functionElimination voidElimination sqequalAxiom intEquality isect_memberEquality independent_pairFormation addEquality applyEquality lambdaEquality voidEquality minusEquality

Latex:
\mforall{}[x,L:Top].  \mforall{}[i:\mBbbZ{}].    ([x  /  L][i]  \msim{}  if  i  \mleq{}z  0  then  x  else  L[i  -  1]  fi  )



Date html generated: 2017_04_14-AM-08_36_58
Last ObjectModification: 2017_02_27-PM-03_28_52

Theory : list_0


Home Index