Nuprl Lemma : select-cons
∀[x,L:Top]. ∀[i:ℤ].  ([x / L][i] ~ if i ≤z 0 then x else L[i - 1] fi )
Proof
Definitions occuring in Statement : 
select: L[n], 
cons: [a / b], 
le_int: i ≤z j, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
top: Top, 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
top_wf, 
select-cons-hd, 
select-cons-tl, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-zero, 
add-zero, 
add-commutes, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
sqequalAxiom, 
intEquality, 
isect_memberEquality, 
independent_pairFormation, 
addEquality, 
applyEquality, 
lambdaEquality, 
voidEquality, 
minusEquality
Latex:
\mforall{}[x,L:Top].  \mforall{}[i:\mBbbZ{}].    ([x  /  L][i]  \msim{}  if  i  \mleq{}z  0  then  x  else  L[i  -  1]  fi  )
Date html generated:
2017_04_14-AM-08_36_58
Last ObjectModification:
2017_02_27-PM-03_28_52
Theory : list_0
Home
Index