Nuprl Lemma : select_append_front
∀[T:Type]. ∀[as,bs:T List]. ∀[i:ℕ||as||].  (as @ bs[i] = as[i] ∈ T)
Proof
Definitions occuring in Statement : 
select: L[n], 
length: ||as||, 
append: as @ bs, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
top: Top, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
prop: ℙ, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
false: False, 
guard: {T}, 
le: A ≤ B, 
ge: i ≥ j , 
subtract: n - m, 
uiff: uiff(P;Q), 
nat_plus: ℕ+, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
not: ¬A, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
cons: [a / b], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
int_seg_wf, 
length_wf, 
list_wf, 
list_induction, 
all_wf, 
equal_wf, 
select_wf, 
append_wf, 
sq_stable__le, 
length-append, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
stuck-spread, 
base_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul, 
zero-add, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
add-commutes, 
mul-distributes-right, 
zero-mul, 
not-lt-2, 
minus-one-mul-top, 
add-swap, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
minus-add, 
mul-commutes, 
mul-associates, 
mul-swap, 
add-zero, 
less-iff-le, 
le-add-cancel-alt, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
decidable__int_equal, 
subtype_base_sq, 
false_wf, 
not-equal-2, 
le-add-cancel, 
condition-implies-le, 
minus-zero, 
squash_wf, 
true_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
not-equal-implies-less, 
subtype_rel_self, 
not-le-2, 
decidable__le, 
le-add-cancel2, 
minus-minus, 
lelt_wf, 
select_cons_tl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
promote_hyp, 
addEquality, 
multiplyEquality, 
minusEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
unionElimination, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[i:\mBbbN{}||as||].    (as  @  bs[i]  =  as[i])
Date html generated:
2017_04_14-AM-08_38_21
Last ObjectModification:
2017_02_27-PM-03_29_42
Theory : list_0
Home
Index