Nuprl Lemma : ss-empty_wf

[X:SeparationSpace]. (ss-empty() ∈ Open(X))


Proof




Definitions occuring in Statement :  ss-empty: ss-empty() ss-open: Open(X) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-empty: ss-empty() subtype_rel: A ⊆B ss-open: Open(X) so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a top: Top all: x:A. B[x]
Lemmas referenced :  false_wf top_wf subtype_rel_dep_function ss-basic_wf subtype_rel_self separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid hypothesis applyEquality thin instantiate sqequalHypSubstitution isectElimination cumulativity universeEquality hypothesisEquality independent_isectElimination isect_memberEquality voidElimination voidEquality lambdaFormation because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:SeparationSpace].  (ss-empty()  \mmember{}  Open(X))



Date html generated: 2020_05_20-PM-01_22_07
Last ObjectModification: 2018_07_06-PM-01_57_55

Theory : intuitionistic!topology


Home Index