Nuprl Lemma : ss-empty_wf
∀[X:SeparationSpace]. (ss-empty() ∈ Open(X))
Proof
Definitions occuring in Statement : 
ss-empty: ss-empty()
, 
ss-open: Open(X)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ss-empty: ss-empty()
, 
subtype_rel: A ⊆r B
, 
ss-open: Open(X)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
false_wf, 
top_wf, 
subtype_rel_dep_function, 
ss-basic_wf, 
subtype_rel_self, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
hypothesis, 
applyEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
universeEquality, 
hypothesisEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:SeparationSpace].  (ss-empty()  \mmember{}  Open(X))
Date html generated:
2020_05_20-PM-01_22_07
Last ObjectModification:
2018_07_06-PM-01_57_55
Theory : intuitionistic!topology
Home
Index