Nuprl Lemma : ss-free-homotopic_wf
∀[X:SeparationSpace]. ∀[a,b:Point(X)].  (ss-free-homotopic(X;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ss-free-homotopic: ss-free-homotopic(X;a;b)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ss-free-homotopic: ss-free-homotopic(X;a;b)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
ss-point_wf, 
path-ss_wf, 
ss-eq_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq-int, 
false_wf, 
rleq_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[a,b:Point(X)].    (ss-free-homotopic(X;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-PM-01_20_24
Last ObjectModification:
2018_07_05-PM-03_17_49
Theory : intuitionistic!topology
Home
Index