Nuprl Lemma : ss-free-homotopic_wf

[X:SeparationSpace]. ∀[a,b:Point(X)].  (ss-free-homotopic(X;a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-free-homotopic: ss-free-homotopic(X;a;b) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-free-homotopic: ss-free-homotopic(X;a;b) so_lambda: λ2x.t[x] prop: and: P ∧ Q all: x:A. B[x] top: Top cand: c∧ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s]
Lemmas referenced :  exists_wf ss-point_wf path-ss_wf ss-eq_wf path-at_wf member_rccint_lemma rleq_weakening_equal int-to-real_wf rleq-int false_wf rleq_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality productEquality because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_isectElimination independent_pairFormation productElimination independent_functionElimination lambdaFormation dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[a,b:Point(X)].    (ss-free-homotopic(X;a;b)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-01_20_24
Last ObjectModification: 2018_07_05-PM-03_17_49

Theory : intuitionistic!topology


Home Index