Nuprl Lemma : path-comp-fun

[T:Type]. ∀[B:SeparationSpace].  (path-comp-property(B)  path-comp-property(T ⟶ B))


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) fun-ss: A ⟶ ss separation-space: SeparationSpace uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q path-comp-property: path-comp-property(X) all: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uimplies: supposing a prop: subtype_rel: A ⊆B ss-point: Point(ss) record-select: r.x fun-ss: A ⟶ ss mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt guard: {T} uiff: uiff(P;Q) path-at: p@t exists: x:A. B[x] pi1: fst(t) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) squash: T rneq: x ≠ y or: P ∨ Q less_than: a < b true: True nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) rleq: x ≤ y rnonneg: rnonneg(x) rge: x ≥ y path-comp-rel: path-comp-rel(X;f;g;h) so_lambda: λ2x.t[x] so_apply: x[s] i-member: r ∈ I rccint: [l, u] subinterval: I ⊆  rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  ss-eq_wf fun-ss_wf path-at_wf member_rccint_lemma rleq-int istype-false rleq_weakening_equal int-to-real_wf rleq_wf ss-point_wf path-ss_wf path-comp-property_wf separation-space_wf istype-universe path-ss-point fun-ss-point real_wf iff_weakening_uiff subtype_rel_self fun-ss-eq unit-ss_wf unit_ss_point_lemma path-comp-rel_wf sq_stable__ss-eq rcc-subinterval rccint_wf rdiv_wf rless-int rless_wf rleq-int-fractions3 decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than le_witness_for_triv rleq-int-fractions2 rleq_functionality_wrt_implies subtype_rel_sets_simple i-member_wf rmul-nonneg-case1 sq_stable__rleq rmul_wf rmul_preserves_rleq2 itermSubtract_wf itermMultiply_wf itermVar_wf rinv_wf2 rleq_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rsub_wf rleq-implies-rleq rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution universeIsType cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination Error :memTop,  natural_numberEquality productElimination independent_functionElimination independent_pairFormation because_Cache independent_isectElimination dependent_set_memberEquality_alt productIsType instantiate universeEquality setElimination rename lambdaEquality_alt applyEquality setIsType functionEquality inhabitedIsType functionIsType promote_hyp functionExtensionality dependent_pairFormation_alt equalityIstype equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination closedConclusion inrFormation_alt unionElimination approximateComputation voidElimination independent_pairEquality functionIsTypeImplies int_eqEquality

Latex:
\mforall{}[T:Type].  \mforall{}[B:SeparationSpace].    (path-comp-property(B)  {}\mRightarrow{}  path-comp-property(T  {}\mrightarrow{}  B))



Date html generated: 2020_05_20-PM-01_21_36
Last ObjectModification: 2020_01_06-AM-11_19_59

Theory : intuitionistic!topology


Home Index