Nuprl Lemma : path-comp-fun
∀[T:Type]. ∀[B:SeparationSpace].  (path-comp-property(B) 
⇒ path-comp-property(T ⟶ B))
Proof
Definitions occuring in Statement : 
path-comp-property: path-comp-property(X)
, 
fun-ss: A ⟶ ss
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
path-comp-property: path-comp-property(X)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
ss-point: Point(ss)
, 
record-select: r.x
, 
fun-ss: A ⟶ ss
, 
mk-ss: Point=P #=Sep cotrans=C
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
path-at: p@t
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
less_than: a < b
, 
true: True
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rge: x ≥ y
, 
path-comp-rel: path-comp-rel(X;f;g;h)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
subinterval: I ⊆ J 
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
ss-eq_wf, 
fun-ss_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq_wf, 
ss-point_wf, 
path-ss_wf, 
path-comp-property_wf, 
separation-space_wf, 
istype-universe, 
path-ss-point, 
fun-ss-point, 
real_wf, 
iff_weakening_uiff, 
subtype_rel_self, 
fun-ss-eq, 
unit-ss_wf, 
unit_ss_point_lemma, 
path-comp-rel_wf, 
sq_stable__ss-eq, 
rcc-subinterval, 
rccint_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rleq-int-fractions3, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
le_witness_for_triv, 
rleq-int-fractions2, 
rleq_functionality_wrt_implies, 
subtype_rel_sets_simple, 
i-member_wf, 
rmul-nonneg-case1, 
sq_stable__rleq, 
rmul_wf, 
rmul_preserves_rleq2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
rinv_wf2, 
rleq_functionality, 
req_transitivity, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rsub_wf, 
rleq-implies-rleq, 
rmul-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
functionEquality, 
inhabitedIsType, 
functionIsType, 
promote_hyp, 
functionExtensionality, 
dependent_pairFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
closedConclusion, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
voidElimination, 
independent_pairEquality, 
functionIsTypeImplies, 
int_eqEquality
Latex:
\mforall{}[T:Type].  \mforall{}[B:SeparationSpace].    (path-comp-property(B)  {}\mRightarrow{}  path-comp-property(T  {}\mrightarrow{}  B))
Date html generated:
2020_05_20-PM-01_21_36
Last ObjectModification:
2020_01_06-AM-11_19_59
Theory : intuitionistic!topology
Home
Index