Nuprl Lemma : fun-ss_wf

[ss:SeparationSpace]. ∀[A:Type].  (A ⟶ ss ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  fun-ss: A ⟶ ss separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fun-ss: A ⟶ ss all: x:A. B[x] not: ¬A implies:  Q false: False fun-sep: fun-sep(ss;A;f;g) exists: x:A. B[x] prop: subtype_rel: A ⊆B separation-space: SeparationSpace record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q ss-sep: y ss-point: Point(ss)
Lemmas referenced :  mk-ss_wf ss-point_wf fun-sep_wf ss-sep-irrefl istype-void subtype_rel_self ss-sep_wf record-select_wf top_wf istype-atom not_wf all_wf or_wf istype-universe separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis dependent_set_memberEquality_alt lambdaEquality_alt inhabitedIsType functionIsType universeIsType lambdaFormation_alt productElimination applyEquality independent_functionElimination voidElimination because_Cache spreadEquality productEquality dependentIntersectionElimination dependentIntersectionEqElimination tokenEquality instantiate universeEquality setEquality cumulativity equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename unionElimination inlEquality_alt dependent_pairEquality_alt inrEquality_alt equalityIstype dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[A:Type].    (A  {}\mrightarrow{}  ss  \mmember{}  SeparationSpace)



Date html generated: 2019_10_31-AM-07_26_41
Last ObjectModification: 2019_09_19-PM-04_08_53

Theory : constructive!algebra


Home Index