Nuprl Lemma : fun-ss-eq
∀[ss:SeparationSpace]. ∀[A:Type]. ∀[f,g:A ⟶ Point(ss)].  uiff(f ≡ g;∀a:A. f a ≡ g a)
Proof
Definitions occuring in Statement : 
fun-ss: A ⟶ ss
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
member: t ∈ T
, 
ss-eq: x ≡ y
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
all_wf, 
exists_wf, 
not_wf, 
ss-sep_wf, 
fun-ss-sep
Rules used in proof : 
productElimination, 
universeEquality, 
functionEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
dependent_pairFormation, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[A:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  Point(ss)].    uiff(f  \mequiv{}  g;\mforall{}a:A.  f  a  \mequiv{}  g  a)
Date html generated:
2018_07_29-AM-10_11_04
Last ObjectModification:
2018_07_03-PM-05_47_58
Theory : constructive!algebra
Home
Index