Nuprl Lemma : fun-ss-eq

[ss:SeparationSpace]. ∀[A:Type]. ∀[f,g:A ⟶ Point(ss)].  uiff(f ≡ g;∀a:A. a ≡ a)


Proof




Definitions occuring in Statement :  fun-ss: A ⟶ ss ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] false: False implies:  Q not: ¬A all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) top: Top member: t ∈ T ss-eq: x ≡ y uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf all_wf exists_wf not_wf ss-sep_wf fun-ss-sep
Rules used in proof :  productElimination universeEquality functionEquality because_Cache dependent_functionElimination lambdaEquality applyEquality hypothesisEquality dependent_pairFormation independent_functionElimination lambdaFormation independent_pairFormation hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[A:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  Point(ss)].    uiff(f  \mequiv{}  g;\mforall{}a:A.  f  a  \mequiv{}  g  a)



Date html generated: 2018_07_29-AM-10_11_04
Last ObjectModification: 2018_07_03-PM-05_47_58

Theory : constructive!algebra


Home Index