Nuprl Lemma : fun-ss-sep

[ss,A,f,g:Top].  (f ~ ∃a:A. a)


Proof




Definitions occuring in Statement :  fun-ss: A ⟶ ss ss-sep: y uall: [x:A]. B[x] top: Top exists: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  exists: x:A. B[x] fun-sep: fun-sep(ss;A;f;g) btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C fun-ss: A ⟶ ss record-select: r.x ss-sep: y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution extract_by_obid sqequalAxiom hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss,A,f,g:Top].    (f  \#  g  \msim{}  \mexists{}a:A.  f  a  \#  g  a)



Date html generated: 2018_07_29-AM-10_11_02
Last ObjectModification: 2018_07_03-PM-01_04_05

Theory : constructive!algebra


Home Index