Nuprl Lemma : fun-ss-sep
∀[ss,A,f,g:Top].  (f # g ~ ∃a:A. f a # g a)
Proof
Definitions occuring in Statement : 
fun-ss: A ⟶ ss
, 
ss-sep: x # y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
fun-sep: fun-sep(ss;A;f;g)
, 
btrue: tt
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-ss: Point=P #=Sep symm=Sym cotrans=C
, 
fun-ss: A ⟶ ss
, 
record-select: r.x
, 
ss-sep: x # y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalAxiom, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[ss,A,f,g:Top].    (f  \#  g  \msim{}  \mexists{}a:A.  f  a  \#  g  a)
Date html generated:
2018_07_29-AM-10_11_02
Last ObjectModification:
2018_07_03-PM-01_04_05
Theory : constructive!algebra
Home
Index