Nuprl Lemma : path-comp-set

[A:SeparationSpace]. ∀[P:Point(A) ⟶ ℙ].
  ((∀a:Point(A). Stable{P[a]})
   (∀a,b:Point(A).  (a ≡  P[b]  P[a]))
   path-comp-property(A)
   path-comp-property({a:A P[a]}))


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) set-ss: {x:ss P[x]} ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace stable: Stable{P} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q path-comp-property: path-comp-property(X) all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q prop: exists: x:A. B[x] path-comp-rel: path-comp-rel(X;f;g;h) uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True cand: c∧ B le: A ≤ B false: False not: ¬A stable: Stable{P} satisfiable_int_formula: satisfiable_int_formula(fmla) path-at: p@t sq_stable: SqStable(P) rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rless: x < y sq_exists: x:A [B[x]] nat_plus: +
Lemmas referenced :  path-ss-point set-ss-point set-ss-eq real_wf rleq_wf int-to-real_wf ss-eq_wf unit-ss_wf unit_ss_point_lemma i-member_wf rccint_wf rdiv_wf rless-int rless_wf path-comp-rel_wf set-ss_wf ss-point_wf path-at_wf member_rccint_lemma rleq-int istype-false rleq_weakening_equal path-ss_wf path-comp-property_wf subtype_rel_self stable_wf separation-space_wf false_wf or_wf not_wf istype-void minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rneq-int full-omega-unsat intformeq_wf itermConstant_wf istype-int int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf rmul-nonneg-case1 rmul_preserves_rleq2 rmul_wf itermSubtract_wf itermMultiply_wf itermVar_wf rinv_wf2 sq_stable__rleq rleq_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma not-rless rleq_weakening_rless nat_plus_properties rsub_wf rleq-implies-rleq rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution cut lambdaEquality_alt introduction extract_by_obid isectElimination thin Error :memTop,  hypothesis sqequalRule because_Cache setElimination rename dependent_set_memberEquality_alt functionExtensionality applyEquality hypothesisEquality inhabitedIsType equalityTransitivity equalitySymmetry closedConclusion setEquality productEquality natural_numberEquality functionIsType setIsType universeIsType productIsType dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation_alt independent_pairFormation promote_hyp independent_isectElimination inrFormation_alt imageMemberEquality baseClosed instantiate universeEquality functionEquality unionIsType unionElimination voidElimination approximateComputation equalityIstype sqequalBase imageElimination int_eqEquality applyLambdaEquality

Latex:
\mforall{}[A:SeparationSpace].  \mforall{}[P:Point(A)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:Point(A).  Stable\{P[a]\})
    {}\mRightarrow{}  (\mforall{}a,b:Point(A).    (a  \mequiv{}  b  {}\mRightarrow{}  P[b]  {}\mRightarrow{}  P[a]))
    {}\mRightarrow{}  path-comp-property(A)
    {}\mRightarrow{}  path-comp-property(\{a:A  |  P[a]\}))



Date html generated: 2020_05_20-PM-01_21_43
Last ObjectModification: 2020_01_06-AM-11_22_58

Theory : intuitionistic!topology


Home Index