Nuprl Lemma : path-comp-set
∀[A:SeparationSpace]. ∀[P:Point(A) ⟶ ℙ].
  ((∀a:Point(A). Stable{P[a]})
  
⇒ (∀a,b:Point(A).  (a ≡ b 
⇒ P[b] 
⇒ P[a]))
  
⇒ path-comp-property(A)
  
⇒ path-comp-property({a:A | P[a]}))
Proof
Definitions occuring in Statement : 
path-comp-property: path-comp-property(X)
, 
set-ss: {x:ss | P[x]}
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
path-comp-property: path-comp-property(X)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
path-comp-rel: path-comp-rel(X;f;g;h)
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
stable: Stable{P}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
path-at: p@t
, 
sq_stable: SqStable(P)
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
Lemmas referenced : 
path-ss-point, 
set-ss-point, 
set-ss-eq, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
ss-eq_wf, 
unit-ss_wf, 
unit_ss_point_lemma, 
i-member_wf, 
rccint_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
path-comp-rel_wf, 
set-ss_wf, 
ss-point_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
rleq_weakening_equal, 
path-ss_wf, 
path-comp-property_wf, 
subtype_rel_self, 
stable_wf, 
separation-space_wf, 
false_wf, 
or_wf, 
not_wf, 
istype-void, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rneq-int, 
full-omega-unsat, 
intformeq_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rmul-nonneg-case1, 
rmul_preserves_rleq2, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
rinv_wf2, 
sq_stable__rleq, 
rleq_functionality, 
req_transitivity, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
not-rless, 
rleq_weakening_rless, 
nat_plus_properties, 
rsub_wf, 
rleq-implies-rleq, 
rmul-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
lambdaEquality_alt, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
setEquality, 
productEquality, 
natural_numberEquality, 
functionIsType, 
setIsType, 
universeIsType, 
productIsType, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
promote_hyp, 
independent_isectElimination, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
functionEquality, 
unionIsType, 
unionElimination, 
voidElimination, 
approximateComputation, 
equalityIstype, 
sqequalBase, 
imageElimination, 
int_eqEquality, 
applyLambdaEquality
Latex:
\mforall{}[A:SeparationSpace].  \mforall{}[P:Point(A)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:Point(A).  Stable\{P[a]\})
    {}\mRightarrow{}  (\mforall{}a,b:Point(A).    (a  \mequiv{}  b  {}\mRightarrow{}  P[b]  {}\mRightarrow{}  P[a]))
    {}\mRightarrow{}  path-comp-property(A)
    {}\mRightarrow{}  path-comp-property(\{a:A  |  P[a]\}))
Date html generated:
2020_05_20-PM-01_21_43
Last ObjectModification:
2020_01_06-AM-11_22_58
Theory : intuitionistic!topology
Home
Index