Nuprl Lemma : set-ss_wf

[ss:SeparationSpace]. ∀[P:Point(ss) ⟶ ℙ].  ({x:ss P[x]} ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  set-ss: {x:ss P[x]} ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T separation-space: SeparationSpace record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] implies:  Q or: P ∨ Q set-ss: {x:ss P[x]} not: ¬A false: False guard: {T} uimplies: supposing a ss-point: Point(ss) ss-sep: y
Lemmas referenced :  subtype_rel_self record-select_wf top_wf istype-atom not_wf all_wf or_wf mk-ss_wf ss-point_wf ss-sep_wf ss-sep-irrefl istype-void subtype_rel_dep_function separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate extract_by_obid isectElimination universeEquality setEquality functionEquality cumulativity lambdaEquality_alt equalityTransitivity equalitySymmetry because_Cache applyLambdaEquality setElimination rename inhabitedIsType universeIsType dependent_set_memberEquality_alt setIsType lambdaFormation_alt independent_functionElimination voidElimination functionIsType unionEquality independent_isectElimination unionIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[P:Point(ss)  {}\mrightarrow{}  \mBbbP{}].    (\{x:ss  |  P[x]\}  \mmember{}  SeparationSpace)



Date html generated: 2019_10_31-AM-07_26_52
Last ObjectModification: 2019_09_19-PM-04_10_14

Theory : constructive!algebra


Home Index