Nuprl Lemma : set-ss-eq
∀[ss,P,x,y:Top].  (x ≡ y ~ x ≡ y)
Proof
Definitions occuring in Statement : 
set-ss: set-ss(ss;x.P[x])
, 
ss-eq: x ≡ y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ss-eq: x ≡ y
Lemmas referenced : 
top_wf, 
set-ss-sep
Rules used in proof : 
because_Cache, 
sqequalAxiom, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[ss,P,x,y:Top].    (x  \mequiv{}  y  \msim{}  x  \mequiv{}  y)
Date html generated:
2016_11_08-AM-09_12_11
Last ObjectModification:
2016_11_03-AM-00_05_02
Theory : inner!product!spaces
Home
Index