Nuprl Lemma : set-ss-eq

[ss,P,x,y:Top].  (x ≡ x ≡ y)


Proof




Definitions occuring in Statement :  set-ss: set-ss(ss;x.P[x]) ss-eq: x ≡ y uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  so_apply: x[s] top: Top so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] ss-eq: x ≡ y
Lemmas referenced :  top_wf set-ss-sep
Rules used in proof :  because_Cache sqequalAxiom hypothesis voidEquality voidElimination isect_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[ss,P,x,y:Top].    (x  \mequiv{}  y  \msim{}  x  \mequiv{}  y)



Date html generated: 2016_11_08-AM-09_12_11
Last ObjectModification: 2016_11_03-AM-00_05_02

Theory : inner!product!spaces


Home Index