Nuprl Lemma : set-ss-sep

[ss,P,x,y:Top].  (x y)


Proof




Definitions occuring in Statement :  set-ss: set-ss(ss;x.P[x]) ss-sep: y uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] mk-ss: mk-ss set-ss: set-ss(ss;x.P[x]) ss-sep: y
Lemmas referenced :  top_wf rec_select_update_lemma
Rules used in proof :  because_Cache hypothesisEquality isectElimination sqequalAxiom isect_memberFormation hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[ss,P,x,y:Top].    (x  \#  y  \msim{}  x  \#  y)



Date html generated: 2016_11_08-AM-09_12_09
Last ObjectModification: 2016_11_03-AM-00_04_15

Theory : inner!product!spaces


Home Index