Nuprl Lemma : not-rless
∀[x,y:ℝ].  y ≤ x supposing ¬(x < y)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
real: ℝ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rless_wf, 
not_wf, 
real_wf, 
rsub_wf, 
less_than'_wf, 
nat_plus_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
less_than_wf, 
decidable__lt, 
nat_plus_properties, 
decidable__le, 
rleq-iff4
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
because_Cache, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x,y:\mBbbR{}].    y  \mleq{}  x  supposing  \mneg{}(x  <  y)
Date html generated:
2016_05_18-AM-07_13_07
Last ObjectModification:
2016_01_17-AM-01_52_12
Theory : reals
Home
Index