Nuprl Lemma : rleq-iff4

[x,y:ℝ].  (x ≤ ⇐⇒ ∀n:ℕ+((x n) ≤ ((y n) 4)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: nat_plus: + uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] prop: rev_implies:  Q so_lambda: λ2x.t[x] real: so_apply: x[s] le: A ≤ B not: ¬A false: False rleq: x ≤ y rnonneg: rnonneg(x) subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} nat_plus: + uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rsub: y rminus: -(x) radd: b accelerate: accelerate(k;f) has-value: (a)↓ nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} int_nzero: -o nat: sq_stable: SqStable(P) lt_int: i <j ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf bool_cases not_wf bnot_wf assert_wf int_term_value_minus_lemma itermMinus_wf add-is-int-iff sq_stable__less_than lt_int_wf absval_ifthenelse subtract_wf sq_stable__le set_wf nat_wf absval_wf rem_bounds_absval nequal_wf div_rem_sum2 mul_cancel_in_le l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma iff_weakening_equal equal_wf int_subtype_base subtype_base_sq int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nil_wf cons_wf reg-seq-list-add-as-l_sum true_wf squash_wf int-value-type value-type-has-value false_wf int_term_value_subtract_lemma itermSubtract_wf subtract-is-int-iff rleq-implies int_term_value_mul_lemma itermMultiply_wf mul_nat_plus rless-iff-large-diff int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt less_than_wf decidable__lt nat_plus_properties decidable__le real_wf rsub_wf less_than'_wf le_wf all_wf rleq_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename addEquality natural_numberEquality productElimination independent_pairEquality dependent_functionElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry minusEquality isect_memberEquality voidElimination unionElimination dependent_set_memberFormation dependent_set_memberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll independent_functionElimination imageMemberEquality baseClosed multiplyEquality pointwiseFunctionality promote_hyp baseApply closedConclusion callbyvalueReduce sqleReflexivity imageElimination divideEquality functionEquality addLevel instantiate cumulativity universeEquality remainderEquality setEquality impliesFunctionality

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  ((x  n)  \mleq{}  ((y  n)  +  4)))



Date html generated: 2016_05_18-AM-07_04_48
Last ObjectModification: 2016_01_17-AM-01_53_20

Theory : reals


Home Index