Nuprl Lemma : rleq-implies
∀[x,y:ℝ].  ∀n:ℕ+. ((x (4 * n)) ≤ ((y (4 * n)) + 11)) supposing x ≤ y
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
multiply: n * m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
rleq: x ≤ y, 
rsub: x - y, 
rnonneg: rnonneg(x), 
rminus: -(x), 
radd: a + b, 
accelerate: accelerate(k;f), 
has-value: (a)↓, 
nat_plus: ℕ+, 
squash: ↓T, 
prop: ℙ, 
real: ℝ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
nat: ℕ, 
less_than': less_than'(a;b), 
less_than: a < b, 
int_nzero: ℤ-o, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
rev_implies: P ⇐ Q, 
bfalse: ff
Lemmas referenced : 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
bool_cases, 
not_wf, 
bnot_wf, 
assert_wf, 
lt_int_wf, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
itermMinus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
intformle_wf, 
minus-is-int-iff, 
add-is-int-iff, 
subtract-is-int-iff, 
decidable__le, 
absval_ifthenelse, 
sq_stable__le, 
set_wf, 
nat_wf, 
absval_wf, 
rem_bounds_absval, 
real_wf, 
rleq_wf, 
less_than'_wf, 
nequal_wf, 
mul_nat_plus, 
div_rem_sum2, 
false_wf, 
mul_preserves_le, 
l_sum_nil_lemma, 
l_sum_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
iff_weakening_equal, 
equal_wf, 
int_subtype_base, 
subtype_base_sq, 
less_than_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_plus_properties, 
nil_wf, 
nat_plus_wf, 
cons_wf, 
reg-seq-list-add-as-l_sum, 
true_wf, 
squash_wf, 
le_wf, 
int-value-type, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
divideEquality, 
functionEquality, 
because_Cache, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
independent_pairFormation, 
addLevel, 
instantiate, 
cumulativity, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
addEquality, 
independent_pairEquality, 
axiomEquality, 
remainderEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
impliesFunctionality
Latex:
\mforall{}[x,y:\mBbbR{}].    \mforall{}n:\mBbbN{}\msupplus{}.  ((x  (4  *  n))  \mleq{}  ((y  (4  *  n))  +  11))  supposing  x  \mleq{}  y
Date html generated:
2016_05_18-AM-07_04_40
Last ObjectModification:
2016_01_17-AM-01_50_37
Theory : reals
Home
Index