Nuprl Lemma : set-ss-point

[ss,P:Top].  (Point {x:Point| P[x]} )


Proof




Definitions occuring in Statement :  set-ss: set-ss(ss;x.P[x]) ss-point: Point uall: [x:A]. B[x] top: Top so_apply: x[s] set: {x:A| B[x]}  sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] mk-ss: mk-ss set-ss: set-ss(ss;x.P[x]) ss-point: Point
Lemmas referenced :  top_wf rec_select_update_lemma
Rules used in proof :  because_Cache hypothesisEquality isectElimination sqequalAxiom isect_memberFormation hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[ss,P:Top].    (Point  \msim{}  \{x:Point|  P[x]\}  )



Date html generated: 2016_11_08-AM-09_12_08
Last ObjectModification: 2016_11_03-AM-00_00_02

Theory : inner!product!spaces


Home Index