Nuprl Lemma : ss-free-homotopic_inversion

X:SeparationSpace. ∀a,b:Point(X).  (ss-free-homotopic(X;a;b)  ss-free-homotopic(X;b;a))


Proof




Definitions occuring in Statement :  ss-free-homotopic: ss-free-homotopic(X;a;b) ss-point: Point(ss) separation-space: SeparationSpace all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ss-free-homotopic: ss-free-homotopic(X;a;b) exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B prop: uall: [x:A]. B[x] top: Top uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uiff: uiff(P;Q) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) path-at: p@t
Lemmas referenced :  ss-eq_wf path-at_wf member_rccint_lemma rleq_weakening_equal int-to-real_wf rleq-int false_wf rleq_wf ss-free-homotopic_wf ss-point_wf separation-space_wf path-ss-point real_wf rleq-implies-rleq rsub_wf trivial-rsub-rleq unit-ss_wf unit_ss_point_lemma set_wf all_wf itermSubtract_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma path-at_functionality unit-ss-eq req_functionality rsub_functionality req_weakening ss-eq_functionality ss-eq_weakening rleq_functionality rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination hypothesisEquality because_Cache sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_isectElimination independent_functionElimination dependent_set_memberEquality lambdaEquality setElimination rename setEquality functionEquality applyEquality approximateComputation int_eqEquality intEquality

Latex:
\mforall{}X:SeparationSpace.  \mforall{}a,b:Point(X).    (ss-free-homotopic(X;a;b)  {}\mRightarrow{}  ss-free-homotopic(X;b;a))



Date html generated: 2020_05_20-PM-01_20_29
Last ObjectModification: 2018_07_05-PM-03_20_55

Theory : intuitionistic!topology


Home Index