Nuprl Lemma : path-comp-for-reals

path-comp-property(ℝ)


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) real-ss:
Definitions unfolded in proof :  path-comp-property: path-comp-property(X) all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rfun: I ⟶ℝ i-member: r ∈ I rccint: [l, u] ss-point: Point(ss) record-select: r.x real-ss: mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt real: ss-eq: x ≡ y ss-sep: y unit-ss: 𝕀 set-ss: {x:ss P[x]} r-ap: f(x) not: ¬A false: False iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) path-at: p@t path-comp-rel: path-comp-rel(X;f;g;h) exists: x:A. B[x] squash: T sq_stable: SqStable(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) uiff: uiff(P;Q) nat_plus: + true: True less_than: a < b or: P ∨ Q guard: {T} rneq: x ≠ y rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  path-ss-point real-path-comp-exists subtype_rel_set real_wf rleq_wf int-to-real_wf ss-point_wf real-ss_wf rfun_wf rccint_wf ss-eq_wf unit-ss_wf unit_ss_point_lemma subtype_rel_self rec_select_update_lemma member_rccint_lemma not-rneq rneq_irrefl rneq_functionality req_weakening req_inversion rneq_wf req_wf i-member_wf rleq-int istype-false path-at_wf path-ss_wf sq_stable__rleq r-ap_wf istype-void int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma istype-int intformeq_wf full-omega-unsat rneq-int rleq_transitivity istype-less_than rleq-int-fractions3 subtype_rel_sets_simple rinv_wf2 itermConstant_wf itermVar_wf itermMultiply_wf itermSubtract_wf rless_wf rless-int rdiv_wf rmul_preserves_rleq2 rmul-nonneg-case1 rmul_wf rleq_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rleq-int-fractions2 rleq-implies-rleq rsub_wf rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin Error :memTop,  hypothesis sqequalRule dependent_functionElimination hypothesisEquality applyEquality functionEquality setEquality productEquality natural_numberEquality lambdaEquality_alt functionIsType setIsType universeIsType productIsType because_Cache independent_isectElimination independent_functionElimination setElimination rename productElimination voidElimination inhabitedIsType independent_pairFormation dependent_set_memberEquality_alt dependent_pairFormation_alt imageElimination baseClosed imageMemberEquality closedConclusion isect_memberEquality_alt equalityIsType4 approximateComputation promote_hyp inrFormation_alt int_eqEquality

Latex:
path-comp-property(\mBbbR{})



Date html generated: 2020_05_20-PM-01_20_57
Last ObjectModification: 2020_02_08-AM-11_41_35

Theory : intuitionistic!topology


Home Index