Nuprl Lemma : rfun_wf

[I:Interval]. (I ⟶ℝ ∈ Type)


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  rfun: I ⟶ℝ uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  real_wf i-member_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut functionEquality setEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  (I  {}\mrightarrow{}\mBbbR{}  \mmember{}  Type)



Date html generated: 2016_05_18-AM-08_41_31
Last ObjectModification: 2015_12_27-PM-11_50_32

Theory : reals


Home Index