Nuprl Lemma : r-ap_wf

[I:Interval]. ∀[f:I ⟶ℝ]. ∀[x:ℝ].  f(x) ∈ ℝ supposing x ∈ I


Proof




Definitions occuring in Statement :  r-ap: f(x) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  r-ap: f(x) rfun: I ⟶ℝ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  i-member_wf real_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality hypothesisEquality dependent_set_memberEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality setEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[x:\mBbbR{}].    f(x)  \mmember{}  \mBbbR{}  supposing  x  \mmember{}  I



Date html generated: 2016_05_18-AM-08_41_53
Last ObjectModification: 2015_12_27-PM-11_51_30

Theory : reals


Home Index