Nuprl Lemma : r-ap_wf
∀[I:Interval]. ∀[f:I ⟶ℝ]. ∀[x:ℝ].  f(x) ∈ ℝ supposing x ∈ I
Proof
Definitions occuring in Statement : 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
i-member_wf, 
real_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
setEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[x:\mBbbR{}].    f(x)  \mmember{}  \mBbbR{}  supposing  x  \mmember{}  I
Date html generated:
2016_05_18-AM-08_41_53
Last ObjectModification:
2015_12_27-PM-11_51_30
Theory : reals
Home
Index