Nuprl Lemma : ss-homeo_transitivity
∀[X,Y,Z:SeparationSpace].  (ss-homeo(X;Y) 
⇒ ss-homeo(Y;Z) 
⇒ ss-homeo(X;Z))
Proof
Definitions occuring in Statement : 
ss-homeo: ss-homeo(X;Y)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ss-homeo: ss-homeo(X;Y)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
ss-comp: ss-comp(f;g)
, 
ss-ap: f(x)
, 
compose: f o g
, 
cand: A c∧ B
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ss-comp_wf, 
all_wf, 
ss-point_wf, 
ss-eq_wf, 
ss-ap_wf, 
exists_wf, 
ss-fun_wf, 
ss-homeo_wf, 
separation-space_wf, 
ss-sep_wf, 
ss-eq_functionality, 
ss-ap_functionality, 
ss-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[X,Y,Z:SeparationSpace].    (ss-homeo(X;Y)  {}\mRightarrow{}  ss-homeo(Y;Z)  {}\mRightarrow{}  ss-homeo(X;Z))
Date html generated:
2020_05_20-PM-01_19_59
Last ObjectModification:
2018_07_04-PM-11_38_46
Theory : intuitionistic!topology
Home
Index