Nuprl Lemma : ss-comp_wf

[X,Y,Z:SeparationSpace]. ∀[f:Point(Y ⟶ Z)]. ∀[g:Point(X ⟶ Y)].  (ss-comp(f;g) ∈ Point(X ⟶ Z))


Proof




Definitions occuring in Statement :  ss-comp: ss-comp(f;g) ss-fun: X ⟶ Y ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  guard: {T} implies:  Q compose: g all: x:A. B[x] ss-function: ss-function(X;Y;f) ss-comp: ss-comp(f;g) prop: top: Top member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ss-eq_wf compose_wf separation-space_wf ss-fun_wf ss-point_wf ss-function_wf ss-fun-point
Rules used in proof :  independent_functionElimination dependent_functionElimination applyEquality lambdaFormation because_Cache equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality dependent_set_memberEquality rename setElimination sqequalRule hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination extract_by_obid sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y,Z:SeparationSpace].  \mforall{}[f:Point(Y  {}\mrightarrow{}  Z)].  \mforall{}[g:Point(X  {}\mrightarrow{}  Y)].    (ss-comp(f;g)  \mmember{}  Point(X  {}\mrightarrow{}  Z))



Date html generated: 2018_07_29-AM-10_12_03
Last ObjectModification: 2018_07_04-PM-11_33_51

Theory : constructive!algebra


Home Index