Nuprl Lemma : ss-comp_wf
∀[X,Y,Z:SeparationSpace]. ∀[f:Point(Y ⟶ Z)]. ∀[g:Point(X ⟶ Y)].  (ss-comp(f;g) ∈ Point(X ⟶ Z))
Proof
Definitions occuring in Statement : 
ss-comp: ss-comp(f;g)
, 
ss-fun: X ⟶ Y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
all: ∀x:A. B[x]
, 
ss-function: ss-function(X;Y;f)
, 
ss-comp: ss-comp(f;g)
, 
prop: ℙ
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ss-eq_wf, 
compose_wf, 
separation-space_wf, 
ss-fun_wf, 
ss-point_wf, 
ss-function_wf, 
ss-fun-point
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaFormation, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
sqequalRule, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y,Z:SeparationSpace].  \mforall{}[f:Point(Y  {}\mrightarrow{}  Z)].  \mforall{}[g:Point(X  {}\mrightarrow{}  Y)].    (ss-comp(f;g)  \mmember{}  Point(X  {}\mrightarrow{}  Z))
Date html generated:
2018_07_29-AM-10_12_03
Last ObjectModification:
2018_07_04-PM-11_33_51
Theory : constructive!algebra
Home
Index