Nuprl Lemma : path-comp-property_functionality

[X,Y:SeparationSpace].  (ss-homeo(X;Y)  (path-comp-property(X) ⇐⇒ path-comp-property(Y)))


Proof




Definitions occuring in Statement :  path-comp-property: path-comp-property(X) ss-homeo: ss-homeo(X;Y) separation-space: SeparationSpace uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q path-comp-property: path-comp-property(X) all: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: guard: {T} ss-homeo: ss-homeo(X;Y) exists: x:A. B[x] path-ss: Path(X) subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T ss-eq: x ≡ y ss-sep: y record-select: r.x path-at: p@t ss-comp: ss-comp(f;g) compose: g ss-ap: f(x) uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) path-comp-rel: path-comp-rel(X;f;g;h) satisfiable_int_formula: satisfiable_int_formula(fmla) rdiv: (x/y) req_int_terms: t1 ≡ t2 nat_plus: + decidable: Dec(P) or: P ∨ Q less_than: a < b true: True i-member: r ∈ I rccint: [l, u] rless: x < y sq_exists: x:A [B[x]]
Lemmas referenced :  ss-eq_wf path-at_wf member_rccint_lemma rleq-int istype-false int-to-real_wf rleq_wf ss-point_wf path-ss_wf path-comp-property_wf ss-homeo_wf separation-space_wf ss-homeo_inversion ss-comp_wf unit-ss_wf subtype_rel_self sq_stable__ss-eq ss-ap_wf ss-fun_wf ss-eq_weakening ss-eq_functionality ss-ap_functionality path-comp-rel_wf real_wf i-member_wf rccint_wf rdiv_wf rneq-int full-omega-unsat intformeq_wf itermConstant_wf istype-int int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf rmul_wf rmul-nonneg-case1 rmul_preserves_rleq2 itermSubtract_wf itermMultiply_wf itermVar_wf rinv_wf2 rleq_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rless-int-fractions3 decidable__lt intformnot_wf intformless_wf int_formula_prop_not_lemma int_formula_prop_less_lemma istype-less_than rless_transitivity2 rleq_weakening_rless rsub_wf rless-int-fractions2 rless_transitivity1 nat_plus_properties rleq-implies-rleq rmul-int
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality sqequalRule dependent_functionElimination Error :memTop,  hypothesis natural_numberEquality productElimination independent_functionElimination independent_pairFormation because_Cache dependent_set_memberEquality_alt productIsType inhabitedIsType applyEquality imageMemberEquality baseClosed imageElimination independent_isectElimination dependent_pairFormation_alt promote_hyp setIsType closedConclusion approximateComputation lambdaEquality_alt voidElimination equalityIstype sqequalBase equalitySymmetry setElimination rename int_eqEquality unionElimination equalityTransitivity setEquality

Latex:
\mforall{}[X,Y:SeparationSpace].    (ss-homeo(X;Y)  {}\mRightarrow{}  (path-comp-property(X)  \mLeftarrow{}{}\mRightarrow{}  path-comp-property(Y)))



Date html generated: 2020_05_20-PM-01_20_52
Last ObjectModification: 2020_02_08-AM-11_43_46

Theory : intuitionistic!topology


Home Index