Nuprl Lemma : rless_transitivity2
∀x,y,z:ℝ. (y < z)
⇒ (x < z) supposing x ≤ y
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rless: x < y
,
real: ℝ
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
real: ℝ
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
int_upper: {i...}
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
uiff: uiff(P;Q)
Lemmas referenced :
false_wf,
int_term_value_subtract_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_formula_prop_less_lemma,
itermSubtract_wf,
itermConstant_wf,
itermAdd_wf,
intformless_wf,
subtract-is-int-iff,
add-is-int-iff,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_plus_properties,
int_upper_properties,
rleq_wf,
rless_wf,
all_wf,
int_upper_wf,
less_than_transitivity1,
rless-iff4,
rleq-iff4,
less_than_wf,
rless-iff-large-diff,
nat_plus_wf,
real_wf,
rsub_wf,
less_than'_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
cut,
introduction,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination,
independent_pairEquality,
voidElimination,
lemma_by_obid,
isectElimination,
applyEquality,
hypothesis,
setElimination,
rename,
minusEquality,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
dependent_set_memberEquality,
independent_pairFormation,
imageMemberEquality,
baseClosed,
dependent_pairFormation,
independent_isectElimination,
addEquality,
because_Cache,
unionElimination,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
computeAll,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion
Latex:
\mforall{}x,y,z:\mBbbR{}. (y < z) {}\mRightarrow{} (x < z) supposing x \mleq{} y
Date html generated:
2016_05_18-AM-07_05_43
Last ObjectModification:
2016_01_17-AM-01_51_35
Theory : reals
Home
Index