Nuprl Lemma : rless-int-fractions3
∀a,b:ℤ. ∀d:ℕ+. ((r(b)/r(d)) < r(a)
⇐⇒ b < a * d)
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rless: x < y
,
int-to-real: r(n)
,
nat_plus: ℕ+
,
less_than: a < b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
multiply: n * m
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
rless: x < y
,
sq_exists: ∃x:{A| B[x]}
Lemmas referenced :
rless_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_plus_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
less_than_wf,
nat_plus_wf,
rmul_preserves_rless,
rmul_wf,
rless_functionality,
req_weakening,
rmul-int,
rmul-rdiv-cancel2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
hypothesis,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
setElimination,
rename,
because_Cache,
independent_isectElimination,
sqequalRule,
inrFormation,
dependent_functionElimination,
productElimination,
independent_functionElimination,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
multiplyEquality,
promote_hyp,
addLevel
Latex:
\mforall{}a,b:\mBbbZ{}. \mforall{}d:\mBbbN{}\msupplus{}. ((r(b)/r(d)) < r(a) \mLeftarrow{}{}\mRightarrow{} b < a * d)
Date html generated:
2016_10_26-AM-09_09_57
Last ObjectModification:
2016_10_06-PM-02_28_45
Theory : reals
Home
Index