Nuprl Lemma : rmul_preserves_rless
∀x,y,z:ℝ.  ((r0 < y) ⇒ (x < z ⇐⇒ (x * y) < (z * y)))
Proof
Definitions occuring in Statement : 
rless: x < y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
uimplies: b supposing a
Lemmas referenced : 
rless_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
rmul_functionality_wrt_rless, 
rinv_wf2, 
rinv-positive, 
rless_functionality, 
req_transitivity, 
req_inversion, 
rmul-assoc, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
inrFormation, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}x,y,z:\mBbbR{}.    ((r0  <  y)  {}\mRightarrow{}  (x  <  z  \mLeftarrow{}{}\mRightarrow{}  (x  *  y)  <  (z  *  y)))
Date html generated:
2016_05_18-AM-07_12_23
Last ObjectModification:
2015_12_28-AM-00_40_30
Theory : reals
Home
Index