Nuprl Lemma : rmul_functionality_wrt_rless

x,y,z:ℝ.  ((x < z)  (r0 < y)  ((x y) < (z y)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) uimplies: supposing a
Lemmas referenced :  rlessw_wf rmul_wf rless-iff-rpositive int-to-real_wf rless_wf real_wf rpositive-rmul rsub_wf real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rpositive_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality productElimination independent_functionElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((x  <  z)  {}\mRightarrow{}  (r0  <  y)  {}\mRightarrow{}  ((x  *  y)  <  (z  *  y)))



Date html generated: 2017_10_03-AM-08_26_38
Last ObjectModification: 2017_07_28-AM-07_24_27

Theory : reals


Home Index