Nuprl Lemma : rpositive_functionality

x,y:ℝ.  rpositive(x) ⇐⇒ rpositive(y) supposing y


Proof




Definitions occuring in Statement :  rpositive: rpositive(x) req: y real: uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B so_apply: x[s] guard: {T} req: y
Lemmas referenced :  req_witness rpositive-iff false_wf le_wf nat_plus_wf all_wf absval_wf subtract_wf rpositive_wf req_wf real_wf req_inversion rpositive2_functionality bdd-diff_inversion
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename because_Cache productElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaEquality applyEquality setElimination dependent_functionElimination independent_isectElimination

Latex:
\mforall{}x,y:\mBbbR{}.    rpositive(x)  \mLeftarrow{}{}\mRightarrow{}  rpositive(y)  supposing  x  =  y



Date html generated: 2016_05_18-AM-07_00_52
Last ObjectModification: 2015_12_28-AM-00_33_30

Theory : reals


Home Index