Step
*
of Lemma
rpositive_functionality
∀x,y:ℝ. rpositive(x)
⇐⇒ rpositive(y) supposing x = y
BY
{ (Assert ⌜∀x,y:ℝ. rpositive(x)
⇒ rpositive(y) supposing x = y⌝⋅
THEN Auto
THEN Try ((InstHyp [⌜y⌝;⌜x⌝] 1⋅ THEN Auto))
THEN (RWO "rpositive-iff" (-1) THENA Auto)
THEN (RWO "rpositive-iff" 0 THENA Auto)
THEN (Assert bdd-diff(x;y) BY
(With ⌜4⌝ (D 0)⋅ THEN Auto))
THEN RWO "-1<" 0
THEN Auto) }
Latex:
Latex:
\mforall{}x,y:\mBbbR{}. rpositive(x) \mLeftarrow{}{}\mRightarrow{} rpositive(y) supposing x = y
By
Latex:
(Assert \mkleeneopen{}\mforall{}x,y:\mBbbR{}. rpositive(x) {}\mRightarrow{} rpositive(y) supposing x = y\mkleeneclose{}\mcdot{}
THEN Auto
THEN Try ((InstHyp [\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}] 1\mcdot{} THEN Auto))
THEN (RWO "rpositive-iff" (-1) THENA Auto)
THEN (RWO "rpositive-iff" 0 THENA Auto)
THEN (Assert bdd-diff(x;y) BY
(With \mkleeneopen{}4\mkleeneclose{} (D 0)\mcdot{} THEN Auto))
THEN RWO "-1<" 0
THEN Auto)
Home
Index