Step
*
of Lemma
path-comp-property_functionality
No Annotations
∀[X,Y:SeparationSpace]. (ss-homeo(X;Y)
⇒ (path-comp-property(X)
⇐⇒ path-comp-property(Y)))
BY
{ ((Assert ⌜∀[X,Y:SeparationSpace]. (ss-homeo(X;Y)
⇒ path-comp-property(X)
⇒ path-comp-property(Y))⌝⋅
THENM (Auto THEN InstHyp [⌜Y⌝;⌜X⌝] 1⋅ THEN EAuto 1)
)
THEN Auto
THEN ParallelLast
THEN Auto) }
1
1. [X] : SeparationSpace
2. [Y] : SeparationSpace
3. ss-homeo(X;Y)
4. ∀f,g:Point(Path(X)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(X)). path-comp-rel(X;f;g;h)))
5. f : Point(Path(Y))
6. g : Point(Path(Y))
7. f@r1 ≡ g@r0
⊢ ∃h:Point(Path(Y)). path-comp-rel(Y;f;g;h)
Latex:
Latex:
No Annotations
\mforall{}[X,Y:SeparationSpace]. (ss-homeo(X;Y) {}\mRightarrow{} (path-comp-property(X) \mLeftarrow{}{}\mRightarrow{} path-comp-property(Y)))
By
Latex:
((Assert
\mkleeneopen{}\mforall{}[X,Y:SeparationSpace]. (ss-homeo(X;Y) {}\mRightarrow{} path-comp-property(X) {}\mRightarrow{} path-comp-property(Y))\mkleeneclose{}\mcdot{}
THENM (Auto THEN InstHyp [\mkleeneopen{}Y\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{}] 1\mcdot{} THEN EAuto 1)
)
THEN Auto
THEN ParallelLast
THEN Auto)
Home
Index