Nuprl Lemma : ss-homeo_inversion
∀[X,Y:SeparationSpace].  (ss-homeo(X;Y) 
⇒ ss-homeo(Y;X))
Proof
Definitions occuring in Statement : 
ss-homeo: ss-homeo(X;Y)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ss-homeo: ss-homeo(X;Y)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
ss-point_wf, 
ss-eq_wf, 
ss-ap_wf, 
exists_wf, 
ss-fun_wf, 
ss-homeo_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality
Latex:
\mforall{}[X,Y:SeparationSpace].    (ss-homeo(X;Y)  {}\mRightarrow{}  ss-homeo(Y;X))
Date html generated:
2020_05_20-PM-01_19_56
Last ObjectModification:
2018_07_04-PM-11_26_53
Theory : intuitionistic!topology
Home
Index