Nuprl Lemma : ss-homeo_inversion

[X,Y:SeparationSpace].  (ss-homeo(X;Y)  ss-homeo(Y;X))


Proof




Definitions occuring in Statement :  ss-homeo: ss-homeo(X;Y) separation-space: SeparationSpace uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q ss-homeo: ss-homeo(X;Y) exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf ss-point_wf ss-eq_wf ss-ap_wf exists_wf ss-fun_wf ss-homeo_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality independent_pairFormation hypothesis productEquality cut introduction extract_by_obid isectElimination sqequalRule lambdaEquality

Latex:
\mforall{}[X,Y:SeparationSpace].    (ss-homeo(X;Y)  {}\mRightarrow{}  ss-homeo(Y;X))



Date html generated: 2020_05_20-PM-01_19_56
Last ObjectModification: 2018_07_04-PM-11_26_53

Theory : intuitionistic!topology


Home Index