Nuprl Lemma : ss-mem-open-or
∀[X:SeparationSpace]. ∀T:Type. ∀F:T ⟶ Open(X). ∀x:Point(X).  (x ∈ ⋃t:T.F[t] 
⇐⇒ ∃t:T. x ∈ F[t])
Proof
Definitions occuring in Statement : 
ss-open-or: ⋃x:T.F[x]
, 
ss-mem-open: x ∈ O
, 
ss-open: Open(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
ss-open-or: ⋃x:T.F[x]
, 
ss-mem-open: x ∈ O
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
ss-open: Open(X)
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_self, 
ss-basic_wf, 
ss-mem-basic_wf, 
exists_wf, 
ss-mem-open_wf, 
ss-open-or_wf, 
ss-point_wf, 
ss-open_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
productEquality, 
cut, 
applyEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
lambdaEquality, 
because_Cache
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}T:Type.  \mforall{}F:T  {}\mrightarrow{}  Open(X).  \mforall{}x:Point(X).    (x  \mmember{}  \mcup{}t:T.F[t]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:T.  x  \mmember{}  F[t])
Date html generated:
2020_05_20-PM-01_22_44
Last ObjectModification:
2018_07_06-PM-05_20_55
Theory : intuitionistic!topology
Home
Index