Nuprl Lemma : ss-mem-open-or

[X:SeparationSpace]. ∀T:Type. ∀F:T ⟶ Open(X). ∀x:Point(X).  (x ∈ ⋃t:T.F[t] ⇐⇒ ∃t:T. x ∈ F[t])


Proof




Definitions occuring in Statement :  ss-open-or: x:T.F[x] ss-mem-open: x ∈ O ss-open: Open(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q ss-open-or: x:T.F[x] ss-mem-open: x ∈ O exists: x:A. B[x] member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B ss-open: Open(X) so_lambda: λ2x.t[x] rev_implies:  Q cand: c∧ B
Lemmas referenced :  subtype_rel_self ss-basic_wf ss-mem-basic_wf exists_wf ss-mem-open_wf ss-open-or_wf ss-point_wf ss-open_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution sqequalRule productElimination thin dependent_pairFormation hypothesisEquality hypothesis productEquality cut applyEquality instantiate introduction extract_by_obid isectElimination functionEquality cumulativity universeEquality lambdaEquality because_Cache

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}T:Type.  \mforall{}F:T  {}\mrightarrow{}  Open(X).  \mforall{}x:Point(X).    (x  \mmember{}  \mcup{}t:T.F[t]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:T.  x  \mmember{}  F[t])



Date html generated: 2020_05_20-PM-01_22_44
Last ObjectModification: 2018_07_06-PM-05_20_55

Theory : intuitionistic!topology


Home Index