Nuprl Lemma : ss-homotopic_weakening
∀X:SeparationSpace
  ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b)) supposing (a ≡ b and b@r0 ≡ x0 and b@r1 ≡ x1)
Proof
Definitions occuring in Statement : 
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
, 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
int-to-real: r(n)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ss-homotopic: ss-homotopic(X;x0;x1;a;b)
, 
exists: ∃x:A. B[x]
, 
path-at: p@t
, 
guard: {T}
Lemmas referenced : 
ss-sep_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq-int, 
false_wf, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq_wf, 
path-ss_wf, 
path-ss-point, 
real_wf, 
ss-eq_weakening, 
ss-eq_wf, 
unit-ss_wf, 
unit_ss_point_lemma, 
set_wf, 
all_wf, 
ss-point_wf, 
separation-space_wf, 
ss-eq_inversion, 
i-member_wf, 
rccint_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
isect_memberEquality, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
productEquality, 
rename, 
setEquality, 
functionEquality, 
applyEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
setElimination
Latex:
\mforall{}X:SeparationSpace
    \mforall{}[x0,x1:Point(X)].
        \mforall{}a,b:Point(Path(X)).    (ss-homotopic(X;x0;x1;a;b))  supposing  (a  \mequiv{}  b  and  b@r0  \mequiv{}  x0  and  b@r1  \mequiv{}  x1)
Date html generated:
2020_05_20-PM-01_20_35
Last ObjectModification:
2018_07_05-PM-03_52_53
Theory : intuitionistic!topology
Home
Index