Nuprl Lemma : ss-homotopic_weakening

X:SeparationSpace
  ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b)) supposing (a ≡ and b@r0 ≡ x0 and b@r1 ≡ x1)


Proof




Definitions occuring in Statement :  ss-homotopic: ss-homotopic(X;x0;x1;a;b) path-at: p@t path-ss: Path(X) ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace int-to-real: r(n) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False top: Top and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) prop: so_lambda: λ2x.t[x] so_apply: x[s] ss-homotopic: ss-homotopic(X;x0;x1;a;b) exists: x:A. B[x] path-at: p@t guard: {T}
Lemmas referenced :  ss-sep_wf path-at_wf member_rccint_lemma rleq-int false_wf rleq_weakening_equal int-to-real_wf rleq_wf path-ss_wf path-ss-point real_wf ss-eq_weakening ss-eq_wf unit-ss_wf unit_ss_point_lemma set_wf all_wf ss-point_wf separation-space_wf ss-eq_inversion i-member_wf rccint_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination because_Cache isect_memberEquality voidEquality hypothesis natural_numberEquality productElimination independent_functionElimination independent_pairFormation independent_isectElimination dependent_set_memberEquality productEquality rename setEquality functionEquality applyEquality dependent_pairFormation equalityTransitivity equalitySymmetry independent_pairEquality setElimination

Latex:
\mforall{}X:SeparationSpace
    \mforall{}[x0,x1:Point(X)].
        \mforall{}a,b:Point(Path(X)).    (ss-homotopic(X;x0;x1;a;b))  supposing  (a  \mequiv{}  b  and  b@r0  \mequiv{}  x0  and  b@r1  \mequiv{}  x1)



Date html generated: 2020_05_20-PM-01_20_35
Last ObjectModification: 2018_07_05-PM-03_52_53

Theory : intuitionistic!topology


Home Index