Nuprl Definition : dma-hom
dma-hom(dma1;dma2) ==  {f:Hom(dma1;dma2)| ∀[a:Point(dma1)]. (¬(f a) = (f ¬(a)) ∈ Point(dma2))} 
Definitions occuring in Statement : 
dma-neg: ¬(x)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
bounded-lattice-hom: Hom(l1;l2)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
lattice-point: Point(l)
, 
apply: f a
, 
dma-neg: ¬(x)
FDL editor aliases : 
dma-hom
Latex:
dma-hom(dma1;dma2)  ==    \{f:Hom(dma1;dma2)|  \mforall{}[a:Point(dma1)].  (\mneg{}(f  a)  =  (f  \mneg{}(a)))\} 
Date html generated:
2016_05_18-AM-11_48_27
Last ObjectModification:
2015_10_12-PM-05_15_47
Theory : lattices
Home
Index