Step
*
1
of Lemma
e-union_wf
1. A : Base
2. A1 : Base
3. A = A1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
4. A ∈ Type
5. A1 ∈ Type
6. A ≡ A1
7. B : Base
8. B1 : Base
9. B = B1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
10. B ∈ Type
11. B1 ∈ Type
12. B ≡ B1
⊢ A ⋃ B ≡ A1 ⋃ B1
BY
{ (D 0 THEN (D 0 THENA Auto) THEN D -1 THEN Reduce 0) }
1
1. A : Base
2. A1 : Base
3. A = A1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
4. A ∈ Type
5. A1 ∈ Type
6. A ≡ A1
7. B : Base
8. B1 : Base
9. B = B1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
10. B ∈ Type
11. B1 ∈ Type
12. B ≡ B1
13. a1 : A
⊢ a1 ∈ A1 ⋃ B1
2
1. A : Base
2. A1 : Base
3. A = A1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
4. A ∈ Type
5. A1 ∈ Type
6. A ≡ A1
7. B : Base
8. B1 : Base
9. B = B1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
10. B ∈ Type
11. B1 ∈ Type
12. B ≡ B1
13. a1 : B
⊢ a1 ∈ A1 ⋃ B1
3
1. A : Base
2. A1 : Base
3. A = A1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
4. A ∈ Type
5. A1 ∈ Type
6. A ≡ A1
7. B : Base
8. B1 : Base
9. B = B1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
10. B ∈ Type
11. B1 ∈ Type
12. B ≡ B1
13. a1 : A1
⊢ a1 ∈ A ⋃ B
4
1. A : Base
2. A1 : Base
3. A = A1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
4. A ∈ Type
5. A1 ∈ Type
6. A ≡ A1
7. B : Base
8. B1 : Base
9. B = B1 ∈ pertype(λA,B. ((A ∈ Type) ∧ (B ∈ Type) ∧ A ≡ B))
10. B ∈ Type
11. B1 ∈ Type
12. B ≡ B1
13. a1 : B1
⊢ a1 ∈ A ⋃ B
Latex:
Latex:
1. A : Base
2. A1 : Base
3. A = A1
4. A \mmember{} Type
5. A1 \mmember{} Type
6. A \mequiv{} A1
7. B : Base
8. B1 : Base
9. B = B1
10. B \mmember{} Type
11. B1 \mmember{} Type
12. B \mequiv{} B1
\mvdash{} A \mcup{} B \mequiv{} A1 \mcup{} B1
By
Latex:
(D 0 THEN (D 0 THENA Auto) THEN D -1 THEN Reduce 0)
Home
Index