Step
*
1
1
1
of Lemma
lattice-axioms-iff-order
.....assertion.....
1. l : LatticeStructure@i'
2. lattice-axioms(l)@i
3. λ2a b.a ≤ b ∈ Point(l) ⟶ Point(l) ⟶ ℙ
⊢ ((∀[a,b:Point(l)]. least-upper-bound(Point(l);x,y.λ2a b.a ≤ b[x;y];a;b;a ∨ b))
∧ (∀[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.λ2a b.a ≤ b[x;y];a;b;a ∧ b)))
∧ Order(Point(l);x,y.λ2a b.a ≤ b[x;y])
BY
{ RepUR ``so_apply so_lambda`` 0 }
1
1. l : LatticeStructure@i'
2. lattice-axioms(l)@i
3. λ2a b.a ≤ b ∈ Point(l) ⟶ Point(l) ⟶ ℙ
⊢ ((∀[a,b:Point(l)]. least-upper-bound(Point(l);x,y.x ≤ y;a;b;a ∨ b))
∧ (∀[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.x ≤ y;a;b;a ∧ b)))
∧ Order(Point(l);x,y.x ≤ y)
Latex:
Latex:
.....assertion.....
1. l : LatticeStructure@i'
2. lattice-axioms(l)@i
3. \mlambda{}\msubtwo{}a b.a \mleq{} b \mmember{} Point(l) {}\mrightarrow{} Point(l) {}\mrightarrow{} \mBbbP{}
\mvdash{} ((\mforall{}[a,b:Point(l)]. least-upper-bound(Point(l);x,y.\mlambda{}\msubtwo{}a b.a \mleq{} b[x;y];a;b;a \mvee{} b))
\mwedge{} (\mforall{}[a,b:Point(l)]. greatest-lower-bound(Point(l);x,y.\mlambda{}\msubtwo{}a b.a \mleq{} b[x;y];a;b;a \mwedge{} b)))
\mwedge{} Order(Point(l);x,y.\mlambda{}\msubtwo{}a b.a \mleq{} b[x;y])
By
Latex:
RepUR ``so\_apply so\_lambda`` 0
Home
Index