Nuprl Definition : bfs-equiv

bfs-equiv(K;S;fs1;fs2) ==  least-equiv(basic-formal-sum(K;S);λas,bs. bfs-reduce(K;S;as;bs)) fs1 fs2



Definitions occuring in Statement :  bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) least-equiv: least-equiv(A;R) apply: a lambda: λx.A[x]
Definitions occuring in definition :  apply: a least-equiv: least-equiv(A;R) basic-formal-sum: basic-formal-sum(K;S) lambda: λx.A[x] bfs-reduce: bfs-reduce(K;S;as;bs)
FDL editor aliases :  bfs-equiv

Latex:
bfs-equiv(K;S;fs1;fs2)  ==    least-equiv(basic-formal-sum(K;S);\mlambda{}as,bs.  bfs-reduce(K;S;as;bs))  fs1  fs2



Date html generated: 2018_05_22-PM-09_45_00
Last ObjectModification: 2018_01_08-PM-03_31_24

Theory : linear!algebra


Home Index