Nuprl Definition : vs-lin-indep

vs-lin-indep(K;vs;v.P[v]) ==
  ∀n:ℕ. ∀f:ℕ1 ⟶ {v:Point(vs)| P[v]} .
    (Inj(ℕ1;Point(vs);f)
     (∀c:ℕ1 ⟶ |K|. ((Σ{c 0≤i≤n} 0 ∈ Point(vs))  (∀i:ℕ1. ((c i) 0 ∈ |K|)))))



Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-mul: x vs-0: 0 vs-point: Point(vs) inject: Inj(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T rng_zero: 0 rng_car: |r|
Definitions occuring in definition :  nat: set: {x:A| B[x]}  inject: Inj(A;B;f) function: x:A ⟶ B[x] implies:  Q vs-point: Point(vs) sum-in-vs: Σ{f[i] n≤i≤m} vs-mul: x vs-0: 0 all: x:A. B[x] int_seg: {i..j-} add: m natural_number: $n equal: t ∈ T rng_car: |r| apply: a rng_zero: 0
FDL editor aliases :  vs-lin-indep

Latex:
vs-lin-indep(K;vs;v.P[v])  ==
    \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  +  1  {}\mrightarrow{}  \{v:Point(vs)|  P[v]\}  .
        (Inj(\mBbbN{}n  +  1;Point(vs);f)
        {}\mRightarrow{}  (\mforall{}c:\mBbbN{}n  +  1  {}\mrightarrow{}  |K|.  ((\mSigma{}\{c  i  *  f  i  |  0\mleq{}i\mleq{}n\}  =  0)  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n  +  1.  ((c  i)  =  0)))))



Date html generated: 2019_10_31-AM-06_26_34
Last ObjectModification: 2019_08_14-PM-06_34_04

Theory : linear!algebra


Home Index