Nuprl Lemma : vs_bag_add_empty_lemma
∀f,vs:Top.  (Σ{f | b ∈ {}} ~ 0)
Proof
Definitions occuring in Statement : 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vs-0: 0
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
empty-bag: {}
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
list_accum: list_accum, 
empty-bag: {}
, 
nil: []
, 
it: ⋅
, 
vs-0: 0
, 
record-select: r.x
, 
member: t ∈ T
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid
Latex:
\mforall{}f,vs:Top.    (\mSigma{}\{f  |  b  \mmember{}  \{\}\}  \msim{}  0)
Date html generated:
2019_10_31-AM-06_25_50
Last ObjectModification:
2019_08_07-PM-03_18_38
Theory : linear!algebra
Home
Index